Воскресенье, 24.09.2017, 18:42Приветствую Вас Гость | RSS
Что будем качать? •Рефераты •Дипломы •Курсовые
•Сочинения
Категории раздела
Архитектура и Строительство [21]
Бухгалтерский учет, Экономика, Финансы [129]
Гуманитарные науки [27]
Психология [11]
Менеджмент и маркетинг [40]
Юриспруденция [48]
Авиация [1]
История [1]
Математика и геометрия [2]
Право [3]
Программирование [3]
Техника и технология [2]
Философия [2]
Экология [1]
Реклама...

Учебные материалы.. первая помощь в учебе...


Главная » Файлы » Дипломные работы » Математика и геометрия

Исследование приближений непрерывных периодических функций тригонометрическими полиномами
(Размер файла - 1.41Mb) 18.09.2012, 21:44


Введение

Дипломная работа посвящена исследованию наилучших приближений непрерывных периодических функций тригонометрическими полиномами. В ней даются необходимые и достаточные условия для того, чтобы наилучшие приближения имели заданный (степенной) порядок убывания.
Дипломная работа носит реферативный характер и состоит из "Введения” и восьми параграфов.
В настоящей работе мы рассматриваем следующие задачи:
При каких ограничениях на непрерывную функцию F(u)(-1 ? u ?+1) её наилучшие приближения En [F;-1,+1] обыкновенными многочленами имеют заданный порядок j (n-1 )?
При каких ограничениях на непрерывную периодическую функцию f (x) её наилучшее приближение En[f] тригонометрическими полиномами имеют заданный порядок j (n-1 )?

Подстановка u=cos(x) сводит задачу 1 к задаче 2. Достаточно, следовательно, рассматривать лишь задачу 2.
Мы ограничимся случаем, когда j(d) I N a, для некоторого a , где j(d) - функция сравнения р-го порядка и для 0< d<h ? p

С.Н.Бернштейн, Д.Джексон и Ш.Валле-Пуссен получили зависимости между оценками сверху для En[f] и дифференциальными свойствами f. Некоторые дополнения к их теоремам доказаны А.Зигмундом. нам предстоит, поэтому, получить зависимости между дифференциальными свойствами f и оценками En[f] снизу. Впервые задачами типа 1 занимался С.Н.Бернштейн. А именно, им получено ассимптотическое равенство:
,
где m - некоторое число.
Наша основная теорема формулируется следующим образом:
Пусть j I N a. Для того чтобы


необходимо, чтобы для любого натурального k>a, и достаточно, чтобы для некоторого натурального k>a

где
Изложим теперь кратко содержание каждого из параграфов работы.
В §1 даётся ряд вспомогательных определений, которые понадобятся в дальнейшей работе.
В §2 выводятся основные свойства модулей непрерывности высших порядков. Почти все эти свойства используются в дальнейшем тексте.
§3 посвящен обобщению теоремы Джексона. Как известно, Джексон доказал следующую теорему: если f имеет непрерывную r-ую производную f (r) , то

Таким образом, теорема Джексона дает оценку сверху для наилучших приближений, если известны дифференциальные свойства аппроксимируемой функции.
В 1947 г. появилась работа С.Н.Бернштейна [1]. Одна из теорем этой работы содержит в качестве следствия такое предложение: пусть

Тогда

В §3 доказываем:
(*)
В §4 формулируется доказанное в работе С.Б.Стечкина [2] обобщение известного неравенства С.Н.Бернштейна [3], [4] для производных от тригонометрического полинома. Мы приводим затем ряд следствий из нашего неравенства (*). Они играют существенную роль при доказательстве теорем §5.
В §5 рассматривается следующая задача. Пусть тригонометрический полином tn , близок в равномерной метрике к заданной функции f или последовательность полиномов {tn} достаточно хорошо аппроксимирует заданную функцию f. Как связаны тогда дифференциальные свойства f с дифференциальными свойствами tn?
Если tn , образуется из f посредством регулярного метода суммирования рядов Фурье, то ответ тривиален: для того чтобы , необходимо и достаточно, чтобы равномерно относительно n. (fIHk[w], если ).
Оказывается, что этот результат сохраняется и для полиномов наилучшего приближения: для того, чтобы равномерно относительно n.
Отметим еще один результат параграфа: для того чтобы , необходимо и достаточно чтобы
.
§6 посвящён "обратным теоремам” теории приближения.
Известно предложение: пусть
.
Тогда, если a не целое, r=[a], b=a-r, то f имеет нерперывную производную .
Случай целого a рассмотрен Зигмундом. В этом случае
.
Нетрудно показать, что эти два предложения эквивалентны следующему: пусть 0<a<k и
.
Тогда
.
В работе [3] С.Н.Бернштейн доказал также эквивалентность условий и .
Мы переносим эти теоремы на условия вида
,
где j I N a.
Кроме того, в этом параграфе доказано, например, такое предложение: пусть k - натуральное число и
;
для того, чтобы , необходимо и достаточно выполнение условия
.
В конце параграфа даются уточнения теорем Валле-Пуссена.
В §7 доказывается основная теорема. Мы даём здесь же оценку En[f] снизу, если
.
Именно, тогда

Случай a=0 установлен С.Н.Бернштейном [3].
В §8 мы рассматриваем несколько решений задач с использованием различных модулей непрерывности.
§1. Некоторые вспомогательные определения.

В работе рассматриваются непрерывные функции f с периодом 2p и их приближение тригонометрическими полиномами. Через tn(x)обозначается тригонометрический полином порядка не выше n, а через tn*(x)=tn*(x,f)-тригонометрический полином, наименее уклоняющийся от f среди всех tn(x). Мы полагаем и пишем

Введём ряд определений.
Определение 1. При каждом фиксированном классом Липшица порядка a называется множество всех непрерывных функция f, модуль непрерывности каждой из которых удовлетворяет условию

где С8-какая-нибудь положительная постоянная, которая не зависит от d и которая, вообще говоря, является различной для разных функций. Этот класс обозначается Ha или Lip a.
Определение 2. Обозначим при фиксированном натуральном r через W(r)L класс функций f, которая имеет абсолютно непрерывные производные до (r-1) порядка и у которой r-я производная принадлежит классу L.
Определение 3. Для непрерывной на [a,b] функции f (x)назовём модулем непрерывности первого порядка или же просто модулем непрерывности функцию w(d)=w(f;d), определённую на [0, b-a] при помощи следующего равенства:
(1.1)
или, что то же самое,
(1.1’)
Свойства модуля непрерывности:
w(0)=0;
w(d) есть функция, монотонно возрастающая;
w(d) есть функция непрерывная;
w(d) есть функция полуаддитивная в том смысле, что для любых и

(1.2)
Доказательство. Свойство 1) вытекает из определения модуля непрерывности.

Свойство 2) вытекает из того, что при больших d нам приходится рассматривать sup на более широком множестве значений h. Свойство 4) следует из того, что если мы число представим в виде h=h1+h2, и , то получим

Из неравенства (1.2) вытекает, что если то т.е.
(1.3)
Теперь докажем свойство 3). Так как функция f (x) равномерно непрерывна на [a,b], то при и, следовательно, для любыхd,
при
а это и означает, что функция w(d) непрерывна.
Определение 4. Пусть функция f (x)определена на сегменте [a,b]. Тогда для любого натурального k и любых и h>0 таких, что k-й разностью функции f в точке x с шагом h называется величина
(1.4)
а при и h>0 таких, что k-й симметричной разностью - величина
(1.4’)
Лемма 1. При любых натуральных j и k справедливо равенство
(1.5)
Доказательство. Действительно, так как при любом натуральном k

то

Лемма доказана.
Лемма 2. При любых натуральных k и n верна формула:
(1.6)
Доказательство. Воспользуемся индукцией по k. При k=1 тождество (1.6) проверяется непосредственно:
.
Предполагая его справедливость при k-1 (k?2), получим

Лемма доказана.
Определение 5. Если измеримая периода (b-a) функция f(x)ILq (Lq-класс всех вещественных измеримых на [a,b] функции f(x)), то под её интегральным модулем гладкости порядка k?1 понимают функцию

Лемма 3. Если то справедливо
(1.7)
Доказательство. В самом деле,

и так далее. Лемма доказана.
Определение 6. Если функция f(x) ограничена на [a,b], то под её модулем гладкости порядка k?1 понимают функцию

заданную для неотрицательных значений и в случае, когда k=1, представляющую собой модуль непрерывности.
Свойства модулей гладкости:

есть функция, монотонно возрастающая;
есть функция непрерывная;
При любом натуральном n имеет место ( точное) неравенство

(1.8)
а при любом -неравенство
(1.8’)
5) Если функция f(x)имеет всюду на [a,b] непрерывные производные до (r-1)-го порядка, и при этом (r-1)-я производная , то
(1.9)
Доказательство. 1) Свойство 1) немедленно вытекает из того, что

2) Свойство 2) доказывается точно так же, как и для случая обычного модуля непрерывности.
3) Предполагая для определённости, что d>d’, получим



Этим непрерывность функции wk(d) доказана.
4) Используя равенство лемму 2 §1, имеем


Этим неравенство (1.8) доказано. Неравенство (1.8’) следует из монотонности функции wk(t) и неравенства (1.8).
5) Используя равенства лемму 1 и лемму 3 §1, получим


Определение 7. Пусть k-натуральное число. Будем говорить, что функция

есть модуль непрерывности k-го порядка функции f, если

где -конечная разность функции f k-го порядка с шагом h:

Среди модулей непрерывности всех порядков особенно важное значение имеют случаи k=1 и k=2. Случай k=1 является классическим; вместо мы будем писать просто и называть эту функцию модулем непрерывности; функцию мы будем называть модулем гладкости.
Определение 8. Зададим натуральное число k. Будем говорить, что функция -есть функция сравнения k-го порядка, если она удовлетворяет следующим условиям:
определена для ,
не убывает,
,


Нетрудно показать, что если f ? 0, то есть функция сравнения k-го порядка (см. Лемму 5 §2).
Определение 9. Зафиксируем натуральное число k и функцию сравнения k-го порядка . Будем говорить, что функция f принадлежит к классу , если найдётся константа С10>0 такая, что

Вместо будем писать просто Hka.
Если для последовательности функций {fn} (n=1,2,...)

где С10 не зависит от n, то будем писать: равномерно относительно n.
Понятие классов является естественным обобщением классов Липшица и классов функций, имеющих ограниченную k-ю производную.
Определение 10. Зафиксируем число a>0 и обозначим через p наименьшее натуральное число, не меньше чем a (p=-[- a]). Будем говорить, что функция принадлежит к классу , если она
1) есть функция сравнения p-го порядка и
2) удовлетворяет условию: существует константа С11>0 такая, что для



Ключевые слова страницы: как, скачать, бесплатно, без, регистрации, смс, реферат, диплом, курсовая, сочинение, ЕГЭ, ГИА, ГДЗ
Категория: Математика и геометрия | Добавил: Тёплый_Котя
Просмотров: 648 | Загрузок: 103 | Рейтинг: 0.0/0
Найти работу...